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Viscosity deviation D� has been investigated by using density and kinematic
viscosity measurements for dioxaneþwater mixtures over the entire range
of mole fractions at atmospheric pressure and in five temperatures (293.15,
298.15, 302.15, 306.15 and 309.15K). This system exhibited very large
positive values of D� due to increased hydrogen bounding interactions
between unlike molecules in the cluster formation region and to very large
differences between the molar volumes of the pure components. The results
were fitted with the Redlich–Kister equations and the recently proposed
Herráez equation. This last model was improved by fixing the first constant
of the corresponding exponential function. Competition between the two
models at different parameter numbers is discussed. We note that, in this
system, where the viscosity versus molar fraction of dioxane presents a
maximum, experimental data are in agreement with the two models when
more than three parameters are employed.

Keywords: viscosity correlation; empirical equation; binary liquid mixture;
1,4-dioxane; Redlich–Kister equation; Herráez equation

1. Introduction

Physical and physico-chemical properties of liquid mixtures are important for
understanding the thermodynamic behaviour. Most importantly, these properties
may provide information about intermolecular interactions. This article is a
continuation of our earlier works that include the study of the binary liquid mixture
of 1,4-dioxaneþwater (D-W) [1,2]. In the previous papers, we have investigated
excess molar volume VE, shear viscosity deviation D� and excess Gibbs energy of the
activation of viscous flow DG*E for isobutyric acidþwater (IBA-W) [3–6] and 1,4-
dioxaneþwater (D-W) [1,2] systems over the entire range of mole fractions at
different temperatures. The 1,4-dioxaneþwater solvent mixture is the most
attractive, and a great deal of work has been well explored by many researchers
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[7–31] with different detailed experimental studies to understand the hydrogen
bounding interactions and correlation length between unlike molecules in the cluster
formation. In the frame of scientific research on binary liquid mixtures in chemical,
pharmaceutical and foodstuff industries, the study of correlation models of excess
quantities, especially the viscosity, is very interesting in applied chemistry to predict
physico-chemical properties in the hydraulic calculations of fluid transport, for
energy transference calculations [32], and in installation’s plans of equipment and
accessories. Hence, among the physical properties of fluids required for designing
and optimising industrial processes, mention should be made of viscosity as one of
the most important factor [32]. Viscosity of 1,4-dioxaneþwater mixtures results
have been fitted to the Redlich–Kister (R-K) polynomial equation [33–34] and the
recently proposed Herráez correlation equation [32] to derive binary coefficients and
estimate the standard errors between experimental and calculated results. Calculated
values are used to understand the nature of molecular interactions between the
mixing components. Competition between the two models at different temperatures
and parameters numbers will be discussed. Note that similar comparisons were made
in previous paper [5] for isobutyric acidþwater mixtures near and far away from
critical temperatures. In this work [5], we have discovered that, at infinite dilution,
the Herráez exponential function’s values converge to a surprising single point (0.5)
independent of temperature. Hence, in the present work, and according to Jones–
Dole expansion [35–39], the recently proposed Herráez equation is improved by
fixing the first constant of the corresponding exponential function to be equal to a
justified (0.5) value.

2. Experimental details

Densities of the pure components and their compositions were measured on a
vibrating tube densitometer, reproducible to 10�2 kgm�3 (Anton Paar model DMA
5000) measuring with (0.005�C) temperature accuracy in a wide temperature range.
The densitometer was calibrated with deionised and triple distilled water; the
observed density was 9970.45 kgm�3 at 25�C, which is close to literature [40]. The
mixtures were prepared by mixing known masses of pure liquids in air tight, with
care being taken to minimise the exposure to air, especially carbon dioxide. All
measurements of mass were performed on an electronic balance accurate to 10�7 kg.

The shear viscosity coefficient � (10�3 Pa s) of the mixture, at different com-
positions and temperatures, is calculated as the product (Equation (1)) of the density
� (10�3 kgm�3) and the kinematic viscosity � (10�4 cm2 s�1):

� ¼ � � v, ð1Þ

which was calculated from the flow time using the following equation:

v ¼ k � ðt� �Þ, ð2Þ

where t is the flow time, k is a constant for a given viscosimeter (AVS/N-Chott-Gerate)
and � is the correction time. Ubbelohde viscosimeter of relatively long flow times (60–
200 s) were used tominimise the time corrections. The viscosimeter was submerged in a
thermally stabilised water bath with thermal regulation of the order of 0.001K. The
time given to attain thermal equilibrium for the content of viscometer was 15min.
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The flow time was measured with an accurate stopwatch to an accuracy of 0.01 s. The
viscosimeter was calibrated separately with fluids of known density and viscosity
(high-performance liquid chromatography grade), which is close to literature [41–42].
The reproducibility of measurements was 5�10�8 Pa s. Five to seven sets of readings
for the flow times were taken for each pure liquid or liquid mixture and arithmetic
mean was considered for the calculations.

Dioxane (Merk, ultra pure for analysis) was distilled under reduced pressure. The
density of the dioxane was found to be 1027.95 kgm�3 at 25�C (literature values
1027.80 kgm�3 [41] and 1027.92 kgm�3 [43]). Deionised and triple-distilled water
with specific conductance 510�4 Sm�1 was used for the preparation of various
compositions.

3. Viscosity results

At least 28 density and viscosity measurements were performed (with repetition) for
each binary system, in the full mole fraction range (0� x1� 1). Dynamic (shear)
viscosities �(Pa s) of (D-W) mixtures at different compositions and temperatures
were calculated from the density (�) and the kinematic viscosities (�). The viscosity
deviation was calculated by the following equation:

D� ¼ �� ðx1 � �1 þ ð1� x1Þ � �2Þ, ð3Þ

where �, �1 and �2 are the viscosity of the mixture and the viscosity of pure
1,4-dioxane (1) and of pure water (2), respectively, and x1 is the mole fraction of pure
1,4-dioxane (D). The experimental values of D� are also reported in Table 1.
In Figure 1, we have reported the viscosity deviation D� against the mole fraction x1
of the 1,4-dioxane (D) at different temperatures. On the other hand, the dioxane and
water both have a proton acceptor group. Thermodynamic and physico-chemical
properties of binary liquid mixtures of 1,4-dioxane with water have also been studied
[2,18–29]. Therefore, the negative excess volume [1,2,15–17,25,28] is an indication of
strong heteromolecular interaction in the liquid mixtures, and according to Fort and
Moore [44] this can be attributed to specific interactions between dioxane and water
molecules investigated in some recent structural studies [1,2,7–14] and non-specific
interactions (dipole–dipole, dipole–induced-dipole, dispersion interactions), which
depend on temperature [44,45]. Hence, there will be a significant degree of
H-bonding, leading to strong correlation between the molecules; also the difference
in the size of the molecules can somewhat play a role in this respect [15–18]. We can
add that there exist specific interactions.

Viscosity deviations D� were positive over the whole range of mole fractions,
quasi-linearly increase with mole fraction x1 and slightly skewed in the middle region
as shown in Figure 1. The values for D� are very large and exceed 50% at 293.15K
and tend to slightly increase with temperature. For the whole range of temperatures
studied, an approximately skewed plateau on D� values is observed and the
maximum of D� occurs at mole fraction in dioxane between 0.15 and 0.33,
approximately.

The large positive D� can be interpreted qualitatively by considering the strength
of intermolecular hydrogen bonding, molecular size and shape of the components.
Also, it indicates the cluster structure stabilisation [1,7–9,46,47]. In fact, before this
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Table 1. Viscosities (10�3 Pa s) and excess viscosities (10�3 Pa s) for the mixtures dioxa-
ne(1)þwater(2) at 293.15, 298.15, 302.15, 306.15 and 309.15K.

x1 � (10�3 Pa s) D� (10�3 Pa s) x1 � (10�3 Pa s) D� (10�3 Pa s)

293.15K
0.0000 1.0030 0.000 0.3560 2.1264 1.01522
0.00206 1.0279 0.02424 0.4203 1.9956 0.86484
0.00628 1.0693 0.06439 0.4996 1.8426 0.68778
0.01516 1.1551 0.14749 0.5367 1.7756 0.60949
0.03482 1.3260 0.31242 0.5999 1.6721 0.48684
0.05303 1.4820 0.46291 0.6479 1.6002 0.40034
0.07366 1.6509 0.62551 0.7309 1.5013 0.27617
0.08413 1.7366 0.70803 0.7621 1.4690 0.23440
0.1114 1.9243 0.88746 0.7953 1.4364 0.19174
0.1433 2.0834 1.0368 0.8686 1.3800 0.11303
0.1726 2.1740 1.1185 0.9092 1.3533 0.07398
0.2065 2.2282 1.1624 0.9760 1.3172 0.01759
0.2501 2.2330 1.1540 0.9855 1.3127 0.01021
0.3029 2.2019 1.1069 1.000 1.3069 0.000

298.15K
0.0000 0.8904 0.000 0.3560 1.8926 0.90047
0.00206 0.9128 0.02182 0.4203 1.8004 0.78992
0.00628 0.9453 0.05310 0.4996 1.6546 0.62148
0.01516 1.0166 0.12187 0.5367 1.5974 0.55365
0.03482 1.1639 0.26360 0.5999 1.5096 0.44785
0.05303 1.2991 0.39359 0.6479 1.4513 0.37579
0.07366 1.4483 0.53687 0.7309 1.3623 0.26308
0.08413 1.5219 0.60743 0.7621 1.3333 0.22517
0.1114 1.6808 0.75858 0.7953 1.3047 0.18709
0.1433 1.8169 0.88556 0.8686 1.2499 0.11134
0.1726 1.8922 0.95249 0.9092 1.2239 0.07373
0.2065 1.9440 0.99461 0.9760 1.1870 0.01775
0.2501 1.9530 0.99113 0.9855 1.1820 0.01004
0.3029 1.9342 0.95727 1.000 1.1761 0.00000

302.15K
0.0000 0.8148 0.00000 0.3560 1.7045 0.78853
0.00206 0.8373 0.02191 0.4203 1.6125 0.67827
0.00628 0.8685 0.05189 0.4996 1.5055 0.54877
0.01516 0.9277 0.10854 0.5367 1.4588 0.49155
0.03482 1.0548 0.23008 0.5999 1.3853 0.40003
0.05303 1.1770 0.34714 0.6479 1.3324 0.33348
0.07366 1.3036 0.46787 0.7309 1.2558 0.23338
0.08413 1.3746 0.53594 0.7621 1.2310 0.19965
0.1114 1.5178 0.67131 0.7953 1.2066 0.16586
0.1433 1.6412 0.78569 0.8686 1.1601 0.09851
0.1726 1.7151 0.85127 0.9092 1.1382 0.06510
0.2065 1.7623 0.88884 0.9760 1.1077 0.01558
0.2501 1.7600 0.87413 0.9855 1.1038 0.00904
0.3029 1.7530 0.85215 1.000 1.0989 0.000

306.15K
0.0000 0.7491 0.00000 0.3560 1.5575 0.70873
0.00206 0.7690 0.01930 0.4203 1.4812 0.61439
0.00628 0.7999 0.04907 0.4996 1.3895 0.50052
0.01516 0.8554 0.10205 0.5367 1.3495 0.45014

(continued )
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Table 1. Continued.

x1 � (10�3 Pa s) D� (10�3 Pa s) x1 � (10�3 Pa s) D� (10�3 Pa s)

0.03482 0.9612 0.20230 0.5999 1.2865 0.36947
0.05303 1.0696 0.30567 0.6479 1.2396 0.30909
0.07366 1.1890 0.41926 0.7309 1.1721 0.21837
0.08413 1.2471 0.47448 0.7621 1.1500 0.18751
0.1114 1.3723 0.59200 0.7953 1.1282 0.15644
0.1433 1.4818 0.69260 0.8686 1.0863 0.09397
0.1726 1.5496 0.75217 0.9092 1.0664 0.06269
0.2065 1.5880 0.78108 0.9760 1.0383 0.01587
0.2501 1.5995 0.78036 0.9855 1.0347 0.00964
0.3029 1.5958 0.76189 1.000 1.0291 0.000

309.15K
0.0000 0.7045 0.000 0.3560 1.4580 0.65490
0.00206 0.7208 0.01573 0.4203 1.3911 0.57018
0.00628 0.7467 0.04049 0.4996 1.3121 0.46922
0.01516 0.7958 0.08713 0.5367 1.2728 0.41961
0.03482 0.8999 0.18574 0.5999 1.2123 0.34164
0.05303 1.0015 0.28230 0.6479 1.1719 0.28794
0.07366 1.1099 0.38497 0.7309 1.1137 0.20673
0.08413 1.1642 0.43637 0.7621 1.0937 0.17807
0.1114 1.2785 0.54316 0.7953 1.0739 0.14911
0.1433 1.3766 0.63243 0.8686 1.0356 0.09052
0.1726 1.4364 0.68406 0.9092 1.0173 0.06097
0.2065 1.4813 0.71960 0.9760 0.9913 0.01643
0.2501 1.4899 0.71611 0.9855 0.9880 0.01048
0.3029 1.4888 0.70040 1.000 0.9815 0.000

0
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0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
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0–3
 P
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Figure 1. Viscosity deviation (D�) in 10�3 Pa s, for the system of dioxane(1)þwater(2) mixtures
vs. molar fraction x1 in dioxane at the temperatures: (.): 293.15K; (�): 298.15K; (m):
302.15K; (D): 306.15K; (g): 309.15K.
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range (0.155 x15 0.33), we must also consider the appreciable modification of
liquid structure beyond 0.08 molar fraction in dioxane (30% weight) [1,8,15,48,49].

4. Empirical equations

The viscosity deviation values D� were correlated with composition using two
procedures. Firstly, the R-K [33] expression (Equation (17)) is fitted in least-squares
polynomial series of Legendre [50–57] polynomials (Equation (20)). Secondly, the
Herráez [32] correlation equation using an exponent polynomial (Equations (21)
and (22)) versus the mole fraction x1 of dioxane at five different temperatures is
proposed. Note that for all techniques, the goodness against the number of the
adjustable parameters is discussed for different temperatures.

4.1. R-K equation

For the dioxaneþwater mixtures, the excess molar properties were correlated by the
R-K [33] equation (Equation (4)), and fitted to a polynomial D�/(x1 (1� x1)) with
(2x1� 1) as a variable (Equations (4), (5) and (17)),

D� ¼ x1ð1� x1Þ
Xp¼n
p¼0

An,p,Tð2x1 � 1Þp, ð4Þ

where x1 is the molar fraction of dioxane, n is the polynomial order and An,p,T the
adjustable parameter for each degree p of monomial (2x1 – 1)p and temperature T.

We note that in a previous paper [1,2], for the excess molar volume VE, shear
viscosity deviation D� and excess Gibbs energy of activation DG*E of viscous flow,
the concordance with experimental data requires more parameters (nþ 1 in Equation
(4)), especially for D�. Therefore, it is observed that the R–K ‘model’ does not
reproduce the main features of the experimental data, even by using a high number
of fitted parameters adjusted to describe VE, D� or DG*E for the D-W mixtures
[1,2,34]. Also, for the mixtures that show a critical behaviour, the correlation fails [3–
6]. This is not surprising, considering that the R-K model does not consider all the
possible interactions occurring in the studied mixtures.

We can add that a comparison between excess properties yj
Ex of isobutyric acid–

water mixtures [3–6] and 1,4-dioxane–wtaer mixtures [1,2] shows a strong similarity
of their mutual curve’s shape (i.e. for the same physical magnitude). In fact, for the
two mixtures, the excess molar volumes VE(y1

Ex) exhibit approximately the same
minima coordinates and are not both practically affected by temperature. The same
behaviour was observed for each pair of excess properties (D�) or (DG*E) for the two
mixtures. We can deduce that this resemblance is due principally to the likeness of
dioxane (D) and isobutyric acid (IBA) molecular weight (isomer) and close density
values. Hence, this common feature leads to a like molecular size. Refering to water
as a common second mixture component and which has a small molecular size, we
can add that a strong specific interaction like hydrogen bounding, dipole–dipole and
dipole-induced dipole interaction and cluster formation play an important role in
this respect.

On the other hand, investigation of the reduced R-K excess molar properties
Qj,exp,T (Equation (5)) shows a completely different behaviour between each pair of
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physical magnitudes in those two precedent mixtures. We can mention, for instance,
the reduced R-K excess molar volume Q1,exp,T. Thereby, in isobutyric acid–water
mixtures case [3,5], the function Q1,exp,T(x1)¼VE/(x1(1� x1)) exponentially increases
at lower concentration of IBA and then it varies smoothly when molar fraction x1 in
IBA increases, while in the case of 1,4-dioxane-water mixtures, Q1,exp,T(x1) decreases
at lower concentration of dioxane and passes through a localised minimum [1,2],
then it increases continuously.

In the same context, Desnoyers and Perron [34] stated that a rapid examination
of the trends of the (yEx) dependence on x1 suggests that many of these systems are
similar but that the differences in interactions are mostly significant in the solution
rich in component 2. Actually, even though one of the excess partial molar quantities
was intentionally taken as identical for all the systems while the other one was varied,
these systems are all basically different.

From the treatment of excess thermodynamic quantities for liquid mixtures
exposed by Desnoyers and Perron [34], we can conclude that the excess quantity
(yEx) gives an overall view of the origin of the nonideality in the mixture but can be
quite misleading, especially with systems which show strong interactions at low
concentrations. Desnoyers and Perron [34], suggest, in agreement with the original
statements of R-K [33], that it is better to plot yEx/(x1(1� x1) for this purpose. Also,
the excess thermodynamic quantities have the advantage of illustrating the sign and
magnitude of the nonideality, but yEx/(x1(1� x1) gives a much better handle on the
origin of the nonideality.

We can note that the reduced R-K excess property yEx/(x1(1� x1) is more
sensitive than (yEx) to interactions which occur at low concentrations [2,34].

In general, if the fitting equation requires more than four parameters, one should
either suspect the presence of specific interactions such as association in the system,
or systematic errors in the data [2,34].

In addition, the mathematical function (x1(1� x1)), as a function of molar
fraction x1 or x2, admits a maximum at equimolar mixture (x1¼ x2¼½). Hence, the
factor (x1(1� x1)) is a dominant term in Equation (4) and tends to attract the
abscissa of extremum of excess functions yj

Ex to the middle of molar fraction interval
(Figure 1). Therefore, the elimination of (x1(1� x1)) factor in the reduced R-K excess
function Qj,exp,T (Equation (5)) leads to the absence of this effect and gives a specific
reduced function Qj,exp,T characterising each property and gives evidence to the
existence of an eventual phenomenon or a predominance interaction.

The experimental reduced excess viscosity Qexp,T (x1), Equation (5), is plotted in
Figure 2 versus the mole fraction x1 of (D).

Qexp, Tðx1Þ ¼ D�=ðx1ð1� x1ÞÞ: ð5Þ

However, noteworthy changes in curvature were found for the studied shear
viscosity deviation D� for dilute solutions of (D). It is not difficult to find an
explanation for these anomalies:

(a) In the very dilute region, it can be associated with thermodynamic solvation
equilibrium. In fact, in the high diluted region (05 x15 0.035, Figure 2), we must
take into account the solvation of dioxane molecules by water ones and Cluster
formation [1,2,7–20]. We add that the beginning of structure change of water in the
region is observed [15]. Also, the significant degree of H-bounding between dioxane

494 N. Ouerfelli et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
2
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



and water molecules leads to strong correlation between the molecules; also

the difference in the size of molecules can also play an important role in this

respect [15–18].
(b) Moreover, if we adopt the Jones–Dole behaviour [35–37] for very dilute

nonelectrolyte solution (Equation (6)), the experimental reduced R-K excess

viscosity (Equation (5)) Qexp,T (x1) must be increased exponentially and diverges at

infinite dilution (x1! 0þ).

� ¼ �2ð1þ A12 � c
1=2
1 þ B12 � c1Þ, ð6Þ

where c1 represents the molarity of (D) (as a solute) in water (as a solvent) and A12

and B12 are the adjustable parameters corresponding to dioxane (1) diluted in water

(2). We note that the Aij coefficient arises from the ion-ion interaction, and the Bij

coefficient from the ion-solvent interaction [37].
Considering the molarity c1 of dioxane in water as:

c1 ¼ x1 � �=M ð7Þ

and

M ¼M2 1þ
M1 �M2

M2

� �
� x1, ð8Þ

where � is the density of mixture, M, M1 and M2 are the molar mass of the mixture

and the molar mass of pure 1,4-dioxane (1) and of pure water (2), respectively.

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1
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10
–3

 P
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Figure 2. Experimental reduced R-K excess properties Qexp,T (x1) in 10�3 Pa s, for the ratio
D�/(x1(1� x1)) of the shear viscosity deviation (Equation (5)) for dioxane þ water mixtures vs.
molar fraction x1 in dioxane at the temperatures: 293.15K (.); 298.15K (�); 302.15K (m);
306.15K (D); 309.15K (g).
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Adopting the dependence of density (�) on molar fraction (x1) investigated in
literature [38,58] and using Equation (9), which was studied and discussed,

�ðx1Þ ¼
Xp¼n
p¼0

bpðx1Þ
p

ð9Þ

we can then write at high dilution of (D) the following expansions:

�ðx1Þ ¼ �2ð1þ b � x1Þ þ oðx1Þ, ð10Þ

where o(x1) is the remainder of expansion, and

c1 ¼
�2
M2

� �
� x1 � 1þ b�

M2 �M1

M2

� �
� x1

� �
þ o x21

� �
: ð11Þ

Consequently, the molarity c1 in Equation (6) can be changed in molar fraction
x1 of (D) and leads to the following limited asymptotic expansion in the vicinity of
zero:

� ¼ �2 1þ A12 �
�2
M2

� �1=2

�x1=21 þ B12
�2
M2

� �
� x1 þ oðx1Þ

" #
, ð12Þ

where �2 and M2 are the density and the molar mass of pure water, respectively.
Note that the viscosity (�id) of ideal mixture can be expressed by Equation (13):

�id ¼ �2 1þ
�1 � �2
�2

� �
� x1: ð13Þ

Considering Equations (3)–(5) and (13), the reduced R-K expression QT(x1) (at fixed
temperature) can be improved in a limited asymptotic expansion in the vicinity
of zero:

Qexp ,Tðx1Þ ¼
�2

x1=21 ð1� x1Þ
� A12 �

�2
M2

� �1=2

þ B12
�2
M2
�
�1 � �2
�2

� �
� x1=21 þ o x1=21

� 	" #
,

ð14Þ

where the function QT (x1) is defined in the opened interval ]0,1[ in molar fraction x1.
By the presence of the x1=21 ð1� x1Þ-term in Equation (14), we can explain the

divergence in Figure 2 of QT(x1) at high dilution (x1� 0þ), showing that the
Falkenhagen parameter A12 [39] is not negligible in many nonelectrolyte mixtures.
However, we can note that in the case of possible absolute absence of ion–ion
interaction (A12¼ 0), Equation (14) leads to Equation (15):

Qexp ,T ðx1Þ ¼
�2

ð1� x1Þ
� B12

�2
M2

� �
�

�1 � �2
�2

� �
þ C12 � x

1=2
1 þ o x1=21

� 	� �
ð15Þ

when C12 is the constant of the following order of limiting asymptotic expansion
of Equation (15). In this case, the rapid change at very low concentration is not
observed. However, we must be suspicious of an eventually completely missed
divergence of QT(x1) at very high dilution (x1! 0þ), when the number of
measurements had been limited [34].

(c) The R-K correlation does not consider all possible interactions that occur in
the studied mixtures, especially the structure-changing of water, at x1� 0.08 and
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cluster formation [15–18]. In fact, around the (x1 � 0.15) region, the interaction
between (D) and (W) molecules is characterised by an increase of the viscosity and
the correlation length.

We must classify this behaviour for the experimental reduced excess viscosity
Qexp,T(x1) into two different composition regions, at x1� 0.08 and at very lower mole
fractions, the variation of Qexp,T (x1) with x1 is peculiar. The values of Qexp,T (x1)
decrease and pass through a localised minimum, and then they pass through a
localised maximum, as shown in Figure 2. This peculiar behaviour of Qexp,T (x1)
against the mole fraction of (D) is also temperature dependent. In fact, the variation
of Qexp,T (x1) is more pronounced at lower temperatures and the position of the
localised minimum moves towards a lower mole fraction of (D) at increasing
temperature and disappears around 315.15 K, which is far from eutectic
temperature. We conclude that at higher temperatures, there will be a competition
between molecular interactions and thermal agitation. Thermal agitation is
dominant at temperatures higher than �315.15 K and vice versa at temperatures
lower than �298.15 K. The Qexp,T (x1) curves in Figure 2 exhibit an weak increase
when (D) is added to water, the maximum occurs at the eutectic composition (xc�
0.1429) when temperature decreases. For higher concentrations of (D), Qexp,T (x1)
decreases continuously but without having an extremum. This behaviour was
observed at all of the studied temperatures. On the other hand, the absence of
divergence of the experimental reduced R-K excess viscosity (Figure 2) at infinite
dilution of water in (D) (x1! 1�) gives evidence for the negligible value of the Aij

coefficient. In fact, for nonelectrolyte solution, the absence of the ion–ion interaction
leads to considering that the Aij value is always zero. In the same context, the quasi-
constancy of Qexp,T (x1) at very dilute range of water in (D) (x1 �1) permits to
investigate the basic information on the solute solvent interaction (B21) in the
absence of the ion–ion interaction. Hence, in the basic of the extended conformal
solution (ECS) theory [59,60], the Qexp,T (x1¼ 1) is the regular viscosity term and
denoted by �21 [37,38,59,60] and we can deduce the B21 coefficient for a
nonelectrolyte binary solution given by Nakagawa [37] as:

B21 ¼M1 � ½ð�2 � �1Þ þ �21�=ð1000�1�1Þ ð16Þ

where �21¼Qexp,T (x1¼ 1), the subscript (1) and (2) denote (D) and water,
respectively. The B21 coefficient is divided into two parts: Bid based on the
contribution of ideal mixture (term in parenthesis in Equation (16)), and the Bn

coefficient based on the net interaction between solute (W) and solvent (D) [37].
Finally, from an analysis of the results, it is clear that the strong interactions and

correlations between dioxane and water molecules in rich range of (W) are reflected
in the reduced excess functions. It is obvious that the structure of water is very much
affected by dioxane [15] and this phenomenon is more pronounced around the
eutectic composition in a larger temperature range.

4.1.1. R-K polynomials

The R-K regressor is very powerful and frequently used to correlate vapour–liquid
equilibrium data and excess properties. Nevertheless, it suffers from the important
drawback that the values of the adjustable parameters An,p,T change (Tables 2 and 3)
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as the number of terms (nþ 1) in the series is increased, so that no physical
interpretation can be attached to them [54–57].

Qn,Tðx1Þ= ¼
Xp¼n
p¼0

An,p,Tð2x1 � 1Þp: ð17Þ

In order to evaluate the validity of the studied models, we have used 28
compositions in the whole range at five temperatures. The calculated results at
different polynomial orders for each temperature are assessed adopting as a
comparator element the �2 goodness of-fit test used to optimise the fit, also called �2

minimisation and it is defined as the follows:

�2 ¼
1

N� k
�
Xi¼N
i¼1

�i, exp � �i,calða0, . . . , ap, . . . , akÞ

�

� �2

, ð18Þ

where (N � k) is the number of degrees of freedom, N is the number of data points of
the sample, k is the number of free parameters ap of the fitting equation with n degree
(n¼ kþ 1) and � is the standard deviation of �i as defined in Equation (19).

Note that the fitted parameters ap in Equation (18) are An,p,T in R-K equation,
an,p,T in Legendre polynomial and Bn,p,T in Herráez function, where p is the
corresponding polynomial’s order (0� p� k).

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼N
i¼1 ð�i, exp � �i,calÞ

2

N� k

s
ð19Þ

where N is the number of points of the sample and k is the number of free parameters
of the fitting equation (n¼ kþ 1). The optimal parameters An,p,T (Equation (17)) in
correlating the viscosity deviation D� and corresponding chi-square minimisation
�2 are listed in Table 2.

The reduced R-K polynomials Qn,T (x1) were fitted with least-squares optimisa-
tion procedure in a series of monomials (2x1� 1)p. The data analysis was performed
using a fitting program OriginPro 7.5 or Kaleidagraph 4.1.

We note that the positive constants An,0,T decrease when temperature (T) or
degree (n) of Qn,T (x1) polynomial increases. In the same time, the variation of
statistical parameters R(%) and �2 sited in Table 2 show that the goodness of the
quality of data is improved.

4.1.2. Legendre polynomials

The Legendre polynomials can also be generated using Gram–Schmidt orthonor-
malisation in the open interval ]�1,1[ with the weighting function 1 (unit function)
[50]. The Legendre polynomials are a basis for the set of polynomials, appropriate
for use on the interval ]�1,1[. The first five Legendre polynomials Lp(X) are listed in
Table 3 when variable X is equal to 2x1� 1.

The reducer R-K polynomials Qn,T (x1) were fitted with least-squares optimisa-
tion procedure in a series of Legendre polynomials Lp(2x1� 1) using a MATLAB 5.3
Software and Fortran Program:

Qn,Tðx1Þ ¼
Xp¼n
p¼0

an,p,TLpð2x1 � 1Þ: ð20Þ
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Table 2. Variation of least-squares constants An,p,T of the fits for the reduced R-K excess
viscosity (Equation (17)) Qn,T (x1) with temperature and the corresponding R(%) and �2 for
each model of n degree (n varies from 1 to 5).

T (K) An,0 A n,1 A n,2 A n,3 A n,4 A n,5 R (%) �2

Q1,T (x1)¼A1,0þA1,1(2x1� 1)

293.15 4.2538 �5.3333 96.215 1.093
298.15 3.7179 �4.4656 95.968 0.819
302.15 3.3380 �4.0878 0 94.399 0.978
306.15 3.0185 �3.6261 94.184 0.802
309.15 2.7421 �3.1452 95.577 0.449

Q2,T (x1)¼A2,0þA2,1(2x1�1)þA2,2(2x1�1)
2

293.15 2.9597 �4.9474 2.8611 99.526 0.145
298.15 2.6579 �4.1496 2.3435 99.130 0.187
302.15 2.2683 �3.7689 2.3651 0 98.166 0.341
306.15 2.0239 �3.3295 2.1988 98.306 0.249
309.15 1.9516 �2.9095 1.7477 99.101 0.0968

Q3,T (x1)¼A3,0þA3,1(2x1�1)þA3,2(2x1�1)
2
þA3,3(2x1�1)

3

293.15 2.9576 �5.0016 2.8683 0.07728 99.526 0.152
298.15 2.6578 �4.1516 2.3437 0.00292 99.130 0.196
302.15 2.2840 �3.3621 2.3111 �0.5803 0 98.226 0.344
306.15 2.0435 �2.8217 2.1314 �0.7243 98.424 0.242
309.15 1.9530 �2.8727 1.7428 �0.05247 99.102 0.101

Q4,T (x1)¼A4,0þA4,1(2x1�1)þA4,2(2x1�1)
2
þA4,3(2x1�1)

3
þA4,4(2x1�1)

4

293.15 2.7829 �4.8906 4.2631 �0.08496 �1.4397 99.582 0.140
298.15 2.5345 �4.0733 3.3280 �0.1116 �1.0160 99.170 0.196
302.15 2.3070 �3.3768 2.1271 �0.5588 0.1899 0 98.228 0.361
306.15 2.1257 �2.8740 1.4748 �0.6479 0.6778 98.449 0.250
309.15 1.9096 �2.8451 2.0897 �0.09282 �0.3581 99.112 0.105

Q5,T (x1)¼A5,0þA5,1(2x1�1)þA5,2(2x1�1)
2
þA5,3(2x1�1)

3
þA5,4(2x1�1)

4
þA5,5(2x1�1)

5

293.15 2.7784 �5.0386 4.3224 0.52546 �1.5055 �0.5018 99.583 0.147
298.15 2.5273 �4.3123 3.4237 0.87414 �1.1221 �0.8103 99.176 0.204
302.15 2.2801 �4.2597 2.4807 3.08184 �0.2022 �2.9929 98.320 0.359
306.15 2.0969 �3.8223 1.8545 3.26241 0.2566 �3.2146 98.583 0.240
309.15 1.9020 �3.0929 2.1890 0.92895 �0.4681 �0.8400 99.125 0.109

Table 3. R-K expression given by Equation (17) and Legendre polynomials given by
Equation (20) as a function of polynomial order p.

Polynomial
order, p

R-K, (2x1�1)
p,

Equation (17)
Legendre polynomial,

Lp(2x1�1), Equation (20)

0 1 1
1 2x1 �1 2x1 �1
2 4(x21 � x1þ 1/4) 6(x21 � x1þ 1/6)
3 8(x31 � 3/2x21þ 3/4x1 � 1/8) 20(x31 � 3/2x21þ 3/5x1 � 1/20)
4 16(x41 � 2x31þ 9/6 x21 �

1/2x1 þ 1/16)
70(x41 � 2x31þ 9/7x21 � 2/7x1 þ1/70)

5 32(x51 � 5/2x41þ 20/8x31 �
5/4x21 þ 5/16x1 � 1/32)

252(x51 � 5/2x41þ 20/9x31 � 5/6x21 þ
5/42x1 � 1/252)
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As mentioned by Peralta and coworkers [54–57], Legendre polynomials belong to the
category of orthogonal functions such as Fourier, Bessel, Hermite and Chebyshev,
which have the valuable feature that for a continuous series of observations the
values of the coefficients do not change appreciably as the number of terms in the
series is increased (Tables 3 and 4). This is an important property because if a
physical explanation can be assigned to one of its coefficients, its value remains
practically constant. For the case of discrete measurements, such as the determina-
tion of volumes of mixing and viscosities of mixtures, the values of the coefficients
will vary, but slightly [54–57]. In addition, as shown in Table 3, the series of Legendre
polynomials have the important characteristic that the structure of its first five terms
is practically the same as that of the first five terms of the R-K expression. The
mathematical procedure to transform a power series expansion, such as that of R-K,

Table 4. Variation of Legendre polynomial constants an,p,T for the reduced R-K excess
viscosity (Equation (20)) Qn,T (x1) with temperature and the corresponding R(%) and �2 for
each model of n degree (n varies from 1 to 5).

T (K) an,0 an,1 an,2 an,3 an,4 an,5 R (%) �2

Q1,T (x1)¼ a1,0L0þ a1,1L1

293.15 4.2538 �5.3333 96.215 1.093
298.15 3.7179 �4.4656 95.968 0.819
302.15 3.3380 �4.0878 0 94.399 0.978
306.15 3.0185 �3.6261 94.184 0.802
309.15 2.7421 �3.1452 95.577 0.449

Q2,T (x1)¼ a2,0L0þ a2,1L1þ a2,2L2

293.15 5.8208 �4.9475 5.7222 99.526 0.145
298.15 5.0014 �4.1496 4.6870 99.130 0.187
302.15 4.6333 �3.7689 4.7301 0 98.166 0.341
306.15 4.2227 �3.3296 4.3977 98.306 0.249
309.15 3.6993 �2.9095 3.4955 99.101 0.0968

Q3,T (x1)¼ a3,0L0þ a3,1L1þ a3,2L2þ a3,3L3

293.15 3.9137 �4.9552 1.9122 0.03091 99.526 0.152
298.15 3.4390 �4.1499 1.5625 0.00117 99.126 0.196
302.15 3.0543 �3.7102 1.5407 �0.2320 0 98.224 0.344
306.15 2.7539 �3.2562 1.4209 �0.2897 98.424 0.242
309.15 2.5339 �2.9041 1.1619 �0.0209 99.102 0.101

Q4,T (x1)¼ a4,0L0þ a4,1L1þ a4,2L2þ a4,3L3þ a4,4L4

293.15 3.9159 �4.9416 2.0194 �0.03398 �0.3291 99.582 0.140
298.15 3.4407 �4.1402 1.6381 �0.0446 �0.2322 44.275 0.196
302.15 3.0540 �3.7120 1.5266 �0.2235 0.04340 0 98.228 0.361
306.15 2.7529 �3.2627 1.3705 �0.2592 0.1549 98.449 0.250
309.15 2.5345 �2.9008 1.1886 �0.0371 �0.08185 99.112 0.105

Q5,T (x1)¼ a5,0L0þ a5,1L1þ a5,2L2þ a5,3L3þ a5,4L4þ a5,5L5

293.15 3.9181 �4.9384 2.0213 �0.01284 �0.3441 �0.06370 99.583 0.147
298.15 3.4441 �4.1351 1.6413 �0.01049 �0.25648 �0.1029 99.176 0.204
302.15 3.0666 �3.6932 1.5382 �0.09743 �0.04622 �0.3800 98.320 0.359
306.15 2.7664 �3.2426 1.3830 �0.12375 0.05866 �0.4082 98.583 0.240
309.15 2.5380 �2.8955 1.1918 �0.00174 �0.1070 �0.1066 99.125 0.109

500 N. Ouerfelli et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
2
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



into an orthogonal series has been described in detail by Tomiska [51,52]. Tomiska
provides the iteration formulas for Legendre or Chebyshev’s series of any order as
well as the proof that the procedure is independent of the conversion coefficients
from the actual excess property [54–57].

We note that the statistical parameters R(%) and �2 have the same values in
Tables 2 and 4 for each fixed temperature (T) and polynomial degree (n)
corresponding to R-K or Legendre. This can be explain by the closely dependence
on the maximal monomial’s order (p) used in the fit (Table 3).

4.2. Herráez equation

4.2.1. The proposed Herráez equation

In a recent paper [32], Herráez et al. propose a new empirical correlation equation
(Equation (21)) which introduces a correcting polynomial (Equation (22)) as an
exponential-acting upon the molar fraction of one of mixture components. We note
that the viscosity excesses calculated with this model generally yield satisfactory
results for many studied mixtures showing monotonous variation in viscosity values
with molar fraction, but records deficient performance when distribution exhibits
a maximum or minimum [32].

�ðx1Þ ¼ �2 þ ð�1 � �2Þ � x
Pn,Tðx1Þ
1 , ð21Þ

where Pn,T (x1) is a power polynomial with order (n) and (nþ 1) adjustable
parameters Bn,p,T:

Pn,Tðx1Þ ¼
Xp¼n
p¼0

Bn,p,T � x
p
1: ð22Þ

Nevertheless, out of curiosity we have examined this model in water–dioxane mixture
in the whole range of composition (x1) and at different temperatures (T). Note that
this mixture shows a pronounced maximum of viscosity around the composition
(x1 � 0.28) which can exceed two times the value of those of pure components. The
exponential values Bn,p,T and constants of Pn,T (x1) polynomials (Equation (22))
calculated from Equation (23) were fitted with least-squares optimisation procedure
in a series of monomials x1

p in nth-degree polynomials. The data analysis was
performed using the fitting program Kaleidagraph 4.1. Results of Bn,p,T are given in
Table 5 and depicted. Hence, the Herráez Pn,T (x1) polynomials of Equation (22) can
be inspected experimentally and graphically (Figure 3) using Equation (23):

Pexp ,Tðx1Þ ¼
ln

�exp ,Tðx1Þ��2
�1��2

� 	
ln x1

ð23Þ

where �1 and �2 are the dynamic viscosity of pure components D and W, respectively,
and �exp,T (x1) the dynamic viscosity of (D–W) mixtures at molar fraction x1 in D and
temperature T for x1 2]0,1[.

The variation of Pn,T (x1) versus molar fraction x1 of (D) shows a monotonous
decrease without any anomaly and occur to a minimum in very rich region in
dioxane. However, at infinite dilution (x1! 0þ), the Pexp,T (x1) values converge to
a surprising single point (Pexp,T(0)¼ 0.5) independent of temperature (Figure 3)
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showing a fixed value of Bn,0,T constant corresponding to the first monomial of

Pn,T (x1) (Equation (22)). We can ascertain this discovery when we inspect the Bn,0,T

constant values in Table 5. In fact, except for anomalous negative values in first-

degree polynomials, the fitted Bn,0,T constant values start from a small positive value

for increasing to the limit value (0.5) when degree (n) of polynomial increases

especially at high temperatures (Table 5). Note that the same remark was made in

our previous work [5], investigating viscosity in isobutyric acid þ water mixtures.

4.2.2. Improved Herráez equation

Considering Equations (21)–(23) and the limiting expansion of

Equation (12), we can write the Herráez polynomial Pn,T (x1) in a limiting

Table 5. Variation of Bn,p,T constants for the Herráez exponent polynomial (Equation (22))
Pn,T (x1) with temperature and the corresponding R(%) and �2 for each model of n degree
(n varies from 1 to 5).

T (K) Bn,0 Bn,1 Bn,2 Bn,3 Bn,4 Bn,5 R (%) �2

P1,T (x1)¼B1,0þB1,1x1
293.15 �0.184855 0 �1.7557 85.253 0.1405
298.15 �0.121265 0 �1.9206 89.616 0.1097
302.15 �0.108155 0 �1.6535 0 86.533 0.1112
306.15 �0.066085 0 �1.6249 87.936 0.0939
309.15 �0.033435 0 �1.5882 88.271 0.0867

P2,T (x1)¼B2,0þB2,1x1þB2,2x
2
1

293.15 0.20655 �5.5755 4.1552 98.718 0.01365
298.15 0.21946 �5.2458 3.6172 98.813 0.01369
302.15 0.23842 �5.0358 3.6793 0 98.709 0.01183
306.15 0.24923 �4.7021 3.3474 98.636 0.01169
309.15 0.26629 �4.5133 3.1819 98.461 0.01249

P3,T (x1)¼B3,0þB3,1x1þB3,2x
2
1þB3,3x

3
1

293.15 0.30323 �7.5382 9.6834 �3.8428 99.442 0.00622
298.15 0.32009 �7.2887 9.3712 �3.9998 99.537 0.00559
302.15 0.33094 �6.9140 8.9696 �3.6775 0 99.480 0.00499
306.15 0.34695 �6.6861 8.9355 �3.8844 99.556 0.00399
309.15 0.36858 �6.5898 9.0306 �4.0655 99.524 0.00405

P4,T (x1)¼B4,0þB4,1x1þB4,2x
2
1þB4,3x

3
1þB4,4x

4
1

293.15 0.3696 �9.9174 22.493 �25.360 11.1548 99.820 0.00210
298.15 0.3842 �9.5865 21.743 �24.780 10.7730 99.862 0.00174
302.15 0.3936 �9.1596 21.060 �23.986 10.5284 0 99.871 0.00130
306.15 0.40168 �8.6476 19.496 �21.623 9.1962 99.874 0.00118
309.15 0.42497 �8.6110 19.913 �22.345 9.4763 99.881 0.00106

P5,T (x1)¼B5,0þB5,1x1þB5,2x
2
1þB5,3x

3
1þB5,4x

4
1þB5,5x

5
1

293.15 0.39287 �11.268 34.254 �60.112 52.494 �17.075 99.871 0.00157
298.15 0.40502 �10.795 32.266 �55.876 47.763 �15.279 99.900 0.00132
302.15 0.41278 �10.274 30.760 �52.647 44.622 �14.083 99.911 0.00094
306.15 0.42138 �9.7913 29.455 �51.050 44.201 �14.459 99.920 0.00079
309.15 0.44113 �9.5493 28.083 �46.485 38.192 �11.861 99.913 0.00081
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asymptotic expansion at high dilution of dioxane in water (i.e. in the vicinity of

zero of x1):

Pexp ,T ðx1Þ ¼
1

2
þ

ln �2
M2

� 	1=2
�

�2
�1��2

� 	
�A12

� �
þ B12

A12
�
�2
M2

� 	1=2
�x1=21 þ o x1=21

� 	
ln x1

:
ð24Þ

We can easily rediscover the limit value of Pn,T (x1) at infinite dilution in water as:

(limx1!0þ Pn,Tðx1Þ ¼ 1/2) and we can conclude that the first monomial of Pn,T (x1) is

a fixed value independent of temperature and equal to 1/2 for the shear viscosity �
(i.e. Bn,0,T¼ 0.5).

We can conclude that the Herráez model (Equations (21) and (22)) can be earning

a fixed initial polynomial constant (B0) such as 0.5 for viscosity. Hence, in the same

degree of fitted polynomials we have a known parameter and we can consider it as

a universal exponent B0. Hence, the improved Herráez equation for correlation

viscosity can be written as

� ¼ �2 þ ð�1 � �2Þ � x
1=2
1 � x

x1�Hn,Tðx1Þ
1

ð25aÞ

or:

� ¼ �2 þ ð�1 � �2Þ � x
0:5þx1�Hn,Tðx1Þ
1

ð25bÞ

where Hn,T (x1) is a power polynomial with order (n� 1) and (n) adjustable

parameters Bn,p,T:

Hn,Tðx1Þ ¼
Xp¼n
p¼1

Bn,p,T � x
p�1
1 : ð26Þ
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Figure 3. The experimental Herráez exponent polynomials (Equation (23)) Pexp,T (x1) for
dioxane +þ water mixtures vs. the mole fraction x1 of IBA at the temperatures, 293.15K (.);
298.15K (�); 302.15K (m); 306.15K (D); 309.15K (g).
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Results of the new Bn,p,T fitted values are given in Table 6.
Nevertheless, we can add that in the case of nonelectrolyte solution when the

Falkenhagen parameter [39] is null or takes very low values (A12¼ 0), we can rewrite

Equation (12) in a new limiting asymptotic expansion at high dilution solution and

we then obtain:

Pexp ,Tðx1Þ ¼ 1þ
ln �2

�1��2
� B12 �

�2
M2

h i
þ o

ffiffiffiffiffi
x1
p� �

ln x1

ð27Þ

from which we can conclude that (limx1!0þ Pn,Tðx1Þ ¼ 1).
Also, we can note that in the very rare case of nonelectrolyte solution when the

parameters A12 and B12 (Equation (12)) are null or take very low values we can

observe that (limx1!0þ Pn,Tðx1Þ ¼ 2) for which we can cite, for example, the case of

infinite dilution of 2-propanol in decane investigated by González et al. [23].

Table 6. Variation of Bn,p,T constants for improved Herráez exponent polynomial (fixed
Bn,0,T¼ 0.5; Equations (22), (25) and (26)) Pn,T (x1) with temperature and the corresponding
R(%) and �2 for each model of n degree (n varies from 1 to 5).

T (K) Bn,0 Bn,1 Bn,2 Bn,3 Bn,4 Bn,5 R (%) �2

P1,T (x1)¼B1,0þB1,1x1
293.15 �2.7657 55.605 0.3417
298.15 �2.8368 69.697 0.2754
302.15 0.5 �2.5504 0 60.519 0.2698
306.15 �2.4598 64.719 0.2314
309.15 �2.3749 66.877 0.2087

P2,T (x1)¼B2,0þB2,1x1þB2,2x
2
1

293.15 �6.8717 5.2617 96.181 0.03854
298.15 �6.4850 4.6749 96.679 0.03639
302.15 0.5 �6.1912 4.6656 0 96.370 0.03156
306.15 �5.8098 4.2929 96.336 0.02979
309.15 �5.5456 4.0631 96.352 0.02813

P3,T (x1)¼B3,0þB3,1x1þB3,2x
2
1þB3,3x

3
1

293.15 �9.2577 13.285 �5.9707 98.626 0.01463
298.15 �8.8608 12.664 �5.9453 98.908 0.01261
302.15 0.5 �8.3913 12.064 �5.5056 0 98.780 0.01118
306.15 �8.0235 11.737 �5.5395 98.943 0.00907
309.15 �7.7382 11.436 �5.4868 99.048 0.00775

P4,T (x1)¼B4,0þB4,1x1þB4,2x
2
1þB4,3x

3
1þB4,4x

4
1

293.15 �11.751 29.355 �34.798 15.461 99.534 0.00520
298.15 �11.215 27.837 �33.163 14.597 99.654 0.00418
302.15 0.5 �10.656 26.660 �31.688 14.042 0 99.649 0.00337
306.15 �10.030 24.670 �28.740 12.443 99.672 0.00294
309.15 �9.6663 23.862 �27.776 11.954 99.757 0.00207

P5,T (x1)¼B5,0þB5,1x1þB5,2x
2
1þB5,3x

3
1þB5,4x

4
1 +B5,5x

5
1

293.15 �13.488 47.238 �90.920 84.316 �28.980 99.708 0.00341
298.15 �12.764 43.778 �83.192 75.978 �25.834 99.781 0.00277
302.15 0.5 �12.081 41.330 �77.730 70.530 �23.775 99.785 0.00216
306.15 �11.421 38.984 �73.660 67.555 �23.196 99.810 0.00178
309.15 �10.769 35.217 �63.415 55.679 �18.403 99.849 0.00135
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4.3. Discussion

The variation of reduced viscosity deviation D�/(x1(1�x1)) with composition was

used in every case to test the quality of the data; this function is extremely sensitive to

experimental errors, particularly in the dilute ranges. In addition, its values at infinite

dilution represent values of the equivalent of the partial excess physical magnitudes

at infinite dilution (x1! 0þ), [47], which can be also calculated from the adjustable

parameters using:

Qn,Tðx1 ¼ 0Þ ¼ An,0,T � An,1,T þ � � � þ ð�1Þ
p
� An,p,T þ � � � þ An,n,T

¼ ð�1 � �2Þ � ð1þ ð@ lnð�� �1Þ=@x1ÞTÞ
ð28Þ

and

Qn,Tðx1 ¼ 1Þ ¼ An,0,T � An,1,T þ � � � þ An,p,T þ � � � þ An,n,T

¼ ð�1 � �2Þ � ð1� ð@ lnð�� �2Þ=@x1ÞTÞ
ð29Þ

for the R-K expression and:

Qn,Tðx1 ¼ 0Þ ¼ an,0,T � an,1,T þ � � � þ ð�1Þ
p
� an,p,T þ � � � þ an,n,T

¼ ð�1 � �2Þ � ð1þ ð@ lnð�� �2Þ=@x1ÞTÞ
ð30Þ

and

Qn,Tðx1 ¼ 1Þ ¼ an,0,T � an,1,T þ � � � þ an,p,T þ � � � þ an,n,T

¼ ð�1 � �2Þ � ð1� ð@ lnð�� �2Þ=@x1ÞTÞ
ð31Þ

for the Legendre polynomials.
In Equations (28)–(31) �i is the shear viscosity of pure component i. The values

of �i, are listed in Table 1 for each temperature. Equations (28) and (30) or (29)

and (31) yield the same values of Qn,T (x1¼ 0) or Qn,T (x1¼ 1), respectively.

Inspection of the results of Tables 2 and 4 proves with a good approximation the

validity of Equations (28)–(31), particularly for fitting polynomials with fourth

or fifth degree.
Considering the derivation function versus molar fraction x1 of viscosity � at

fixed temperature, in Herráez model, (Equation (21)) as:

ð@�=@x1ÞT ¼ ð�� �2Þ � ½@Pn,Tðx1Þ=@x1 � lnðx1Þ þ Pn,Tðx1Þ=x1� ð32Þ

we can easily find a relationship between the reduced R-K excess viscosity

Qn,T (x1¼ 1) and the Herráez exponent polynomial Pn,T (x1¼ 1) at the limit of

x1¼ 1 (pure dioxane).

Pn,Tðx1 ¼ 1Þ ¼ 1�Qn,Tðx1 ¼ 1Þ=ð�1 � �2Þ ¼ ð@�=@x1ÞT=ð�1 � �2Þ: ð33Þ

As shown in Equation (33), at mutual infinite dilution (D in W or W in D) the

limiting Herráez exponent polynomial values can be related to the viscosity

derivation function as:

Pn,Tðx1 ¼ 0Þ ¼ Bn,0,T ¼ ðx1 � @ lnð�� �2Þ=@x1ÞT

¼ �ðx1 � @ lnð�� �1Þ=@x1ÞT
ð34Þ
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and

Pn,Tðx1 ¼ 1Þ ¼ Bn,0,T þ Bn,1,T þ � � � þ Bn,p,T þ � � � þ Bn,n,T ¼ ð@ lnð�� �2Þ=@x1ÞT ¼ 1:

ð35Þ

We can conclude that Bn,p,T parameters have more mathematical than physical

significance.
The value of �2 and R(%) (Equations (18) and (19), Table 5) have been

calculated for Equations (17), (20) and (22) in order to compare the results with
those obtained from Equations (3), (4) and (21). For many experimental data in the
literature, authors show that in the representations where the function �¼ f(x1)

exhibits monotonous variation (concave or convex distribution), can be well
represented by correlation models only with one, two or three parameters
[32,33,61–66]. That is why our choice was of adopting Equations (4) and (22) with

a maximum of three parameters, because it is uncommon to introduce more than
three parameters in the common correlation models. Nevertheless, when the function
�¼ f(x1) presents a pronounced maximum or minimum, these proposed models

record deficient performance and the correlation fails, especially for the binary
mixtures that show a critical behaviour and near phase transition temperature [3,32].
In these mixtures we must manipulate Equations (4) and (22) with four parameters

as a minimum.
Tables 2 and 4 present the coefficients of the fits of the correlation

(Equations (17) and (20)) as well as and their corresponding common values of �2

and R(%). In the same way, Table 5 shows the coefficients of the fit Bn,p,T and their
corresponding �2 and R(%) values corresponding to Equation (22).

We see here that for the (D-W) mixtures, the Herráez proposed equation

(Equation (22)) with three parameters or more gives better results than the R-K
equation involving the same number of parameters. For a single or two parameters,
the R-K equation affords better results.

As shown in Tables 2 and 4, at constant temperature, the chi-square
minimisation �2 decreases when the degree (n) of reduced R-K function (Equation

(17)) increases and becomes reasonable from the second degree. The �2-value,
strongly increases at low temperature showing the strong correlation between
molecules in the mixture.

In the same way, as shown in Table 5 at constant temperature, the chi-square
minimisation �2 decreases when the degree (n) of Herráez function (Equation (22))

increases and gives aberrant values (�24 0.4) for the first degree’s polynomial caused
by the negative value of the B1,0,T coefficient (Table 5). Also �2 becomes reasonable
(�25 0.015) from the second degree and remains constant except at low temperature

where we observe a small increase.
We can consider that the Herráez function Pexp,T (x1), as a mathematical

function, is a dimensionless number and represents physically a variable effective
exponent which depends on the composition of mixture. Note that this function
converges at infinite dilution (x1! 0þ) to a common value (0.5) independent of

temperature.
On the other hand, the reduced R-K function Qexp,T (x1) (Equation (5), Figure 2)

can be considered as a physical function and can be showing different phenomena
or behaviours, like the beginning of cluster formation or structure changing.
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We remark that, preliminary fittings and calculations have shown that the

concordance with experimental data requires more parameters (Figures 4–6). Many

experimenters conclude the improvement of results only with the goodness of

statistical parameters. In fact, they are satisfied with calculating standard deviation

without examining the agreement of calculated data with the experimental one in

each zone of their investigated domain, particularly for the satisfied value of

corresponding standard deviation. As it indicates in the literature, for none of the

systems does the precision warrant the use of more than four parameters [4], but

these models with four parameters or less [32,33,61–66] did not reproduce the main

features of the experimental data and the interpolation cannot cover all data points,

especially far from the diluted range and near composition corresponding to

maximum of viscosity at low temperature (Figures 4–6). In these intermediate

regions, the interpolation fails, although the precision and statistical parameters (R,

�, �2, etc.) shows a good representation and even in the majority of calculated points

shows a good concordance with the experimental one. In fact, the goodness of

statistical parameters provides global and middle indications. Also, even in the case

of good quality of data points we can observe a relative viscosity discrepancy

between the calculated and experimental one ((�cal� �exp)/�exp), the composition

corresponding to the maximum of viscosity exceeds 10% for some points even for

high temperature.
However, we note that for the improved Herráez equation (Equation (22) and

Figure 6), the fixed universal exponent B0 to 0.5 value removes the observed

aberration in first degree of polynomial, showing that it must be excelled in the case

of monotonous variation in viscosity values with molar fraction [32].

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

 η
 (1

0–3
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a 
s)

 

x1

(n = 1)

Figure 4. Comparison of experimental viscosity data at 302.15K ( ) with that calculated by
R-K models (Equations (3)–(5)) for different fixed degrees (n) of Qn,T (x1) polynomials
(n varies from 1 to 5).
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Figure 5. Comparison of experimental viscosity data at 302.15K ( ) with that calculated by
Herráez models (Equations (21) and (22)) for different fixed degrees (n) of exponent
polynomials Pn,T (x1) (n varies from 1 to 5).
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Figure 6. Comparison of experimental viscosity data at 302.15K ( ) with that calculated by
the improved Herráez models (Equations (25) and (26)) for different fixed degrees (n) of
exponent polynomials Pn,T (x1) (n varies from 1 to 5).
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5. Adapted Herráez equation

However, the physical properties of mixtures have the principal common feature that
their values tend towards its pure ones (y1 or y2) at infinite dilution (when x1! 0 or
1). So, we can use the same approach that Herráez used in viscosity (Equations (21)
and (22)), to adapt and generalise his proposed equation to any physical properties
(y) other than the shear viscosity (�).

yðx1Þ ¼ y2 þ ð y1 � y2Þ � x
Pn,T ðx1Þ
1 , ð36Þ

where y, y1 and y2 are the investigated property of the mixture and the property of
pure components (1) and (2), respectively, and x1 is the mole fraction of pure
component (1). Pn,T (x1) is a power polynomial with order (n) and (nþ 1) adjustable
parameters Bn,p,T:

Pn,Tðx1Þ ¼
Xp¼n
p¼0

Bn,p,T � x
p
1: ð37Þ

Henceforth, we can use a similar equation (Equation (36)) for investigating a
property (y) of the mixture. Note that the choice of index (1) in x1-variable for the
first component must respect the mathematical definition’s domain of the exponen-
tial function (Equation (36)). In fact, all the y-values of mixtures in the whole range
must be absolutely majored or minored by the selected y2-value at the considering
fixed temperature T.

Inspecting some physical properties at fixed temperature T of different binary
liquid mixtures in the literature, we have represented the corresponding experimental
Herráez polynomial Pexp,T (x1) applying Equation (38) for x1 ]0,1[

Pexp ,Tðx1Þ ¼
ln

yexp ,Tðx1Þ�y2
y1�y2

� 	
ln x1

: ð38Þ

However, we have found that at infinite dilution the Pexp,T (x1)-values converge to
single point (0.5 or 1) or more independent of temperature. Hence, we can categorise
the different physical properties into two types; such as viscosity-type for 0.5-limit
(Figure 7) and density-type for 1-limit (Figure 8); except in very rare and particular
case we can observe a value greater than the precedent habitual values.

6. Conclusion

In the case of distributions of viscosity data as a function of mole fraction presenting
a maximum or minimum, the two investigated models show deficient performance
for one and two degrees of their corresponding polynomials, especially at low
temperature. We must record high values of chi-square minimisation �2 which
increase at low temperature. This divergence is more pronounced in the R-K model
than Herráez one. Likewise, the concordance with experimental data fails around
composition corresponding to maximum of viscosity. The R-K polynomial constants
offer more physical explanation of binary mixture properties than those of Herráez.

Starting from three degrees, the two models begin to reproduce the experimental
data points. The R-K model offers better results than those of Herráez with the same
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number of parameters. The R-K polynomial is more sensitive to experimental point’s

number whereas the Herráez model offers a good smoothed interpolation without

any oscillation between data points even in the case of a few experimental samples

numbers. In opposition to that indicated in literature [32], as well as R-K model, the

Herráez one can describe distribution showing a maximum or minimum in viscosity

values of mixture but with increasing of parameters number and taking mathemat-

ical precaution (boundary conditions, overvalue, undervalue, etc.).
Nevertheless, the Herráez model can be excelled in describing correlation

viscosities in binary mixtures, with the same number of variable parameters than

R-K model, when the corresponding first constant is fixed to 0.5 for all studied

temperatures. We must take care that in the case of some nonelectrolyte mixtures the

net absence of the ion–ion interaction when the Falkenhagen parameter Aij [39] is

absolutely null, leads to a fixed value of Herráez model to (1.0) or more [43]. In the

same context, the Herráez model can be also adapted and generalised in other

correlation physical properties of binary liquid mixtures and can be earned a fixed

initial polynomial constant for each physical magnitude like the Gibbs energy of

activation of viscous flow (0.5), density, molar volume (1.0), electrical conductivity

of binary solvent mixtures (0.5), refractive index (1.0), electrical permittivity (1.0),

speed of sound, etc. Note that this first constant-value (B0) is justified in this work

and can be considered as a universal exponent for each type of physical property in
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Figure 7. Experimental Herráez exponent polynomials Pexp,T (x1) (Equations (38), (39) and
(22)) for some properties of viscosity-type Herráez magnitudes in different systems of binary
liquid mixtures vs. square root of molar fraction x1 in IBA or D, (.): kinematic viscosity � of
IBAþW at 313.15K [3,5]; (�): shear viscosity � of IBAþW at 313.15K [3,5]; (m): electrical
conductivity � in IBAþW at 313.15K [6]; (D): Gibbs energy of activation of viscous flow DG*
of IBAþW at 313.15K [3,5]; (g): Heat capacity Cp of IBAþW at 308.15K [67]; (œ): shear
viscosity � in D þW at 298.15K [2]; (^): kinematic viscosity � in D þW at 298.15K [2]; (s):
Gibbs energy of activation of viscous flow DG* of DþW at 298.15K [2].
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binary mixtures. In the next work, different physical magnitudes in binary liquid

mixtures will be classified into two categories.
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[7] I. Bakó, G. Pálinkás, J.C. Dore, and H.E. Fisher, J. Chem. Phys. Lett. 303, 319 (1999).

–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

x1

x2

P
ex

p,
T
(x

1)
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